

Course unit English denomination	Introduction to Bosonization in condensed matter physics
Teacher in charge (if defined)	Luca Dell'Anna
Teaching Hours	24
Number of ECTS credits allocated	3
Course period	02/2025 - 06/2025
Course delivery method	x In presence □ Remotely □ Blended
Language of instruction	English
Mandatory attendance	x Yes (50% minimum of presence) □ No
Course unit contents	An elementary introduction to the technique of Bosonization for 1-dimensional systems and its relevant applications in condensed matter Physics are presented. The main topics of the course are the following:
	1) Fermi surface and spectrum of low energy excitations of free spinless fermions.
	2) Green's functions of left and right moving Fermi fields.
	3) Normal ordering and Tomonaga Hamiltonian.
	4) Kac-Moody algebra as a spectrum generating algebra for Tomonaga Hamiltonian.
	5) Application to an interacting fermionic system: the Luttinger liquid.
	6) Application to a quantum spin chain: Bosonization of the Heisenberg model.
	5) Spinful fermions: spin-charge separation and application to Fermi-Hubbard model.
Learning goals	The objectives are: learn the methods and develop the skills necessary to apply these knowledges to the resolution of one-dimensional quantum problems
Teaching methods	Frontal lectures

CORSI DI DOTTORATO

Course on transversal, interdisciplinary, transdisciplinary skills	□ Yes x No
Available for PhD students from other courses	□ Yes □ No
Prerequisites (not mandatory)	
Examination methods (in applicable)	Oral exam
Suggested readings	Course notes
Additional information	