

Course unit English denomination	String Theory
Teacher in charge	Fabio Apruzzi
(if defined)	Gianluca Inverso
(II defined)	Glainded in verso
Teaching Hours	24
Number of ECTS	3
credits allocated	
Course period	February-June 2025
Course delivery	☐ In presence
method	□ Remotely
	□ Blended
Language of	English
instruction	
Mandatory attendance	☑ Yes (50% minimum of presence)
	□ No
Course unit contents	1. String Theory in target space and effective actions
	2. Global and local supersymmetry in D=4
	3. Pure supergravity
	4. Matter couplings in N=1, D=4 supergravity
	5. Supergravity with a cosmological constant6. Extended supergravities
	7. Supergravity in 11 dimensions, maximal and half-maximal supergravities in 10
	dimensions
	8. Maximally symmetric vacua and compactification: KK-reductions and lower-
	dimensional effective field theories (EFTs)
	9. From supergravity theories to rigid supersymmetric QFTs: decoupling gravity
	from the EFT
	10. Brane solutions and brane engineering
	11. Gauge theories from string geometry and from brane systems
	12. Strong coupling effects from string geometry and from brane systems
Learning goals	The aim of this course is to develop an understanding of the basic principles of
	string theory, supersymmetry and supergravity, and their applications. Students
	will acquire the tools to perform supersymmetry calculations, in the
	construction of string theory effective actions, understand the basics of flux
	compactifications, the relation between brane systems and gauge theories,
	and the study of non-perturbative effects and dualities within these frameworks.
Teaching methods	Lectures
	Lectures
Course on	
transversal,	□Yes
interdisciplinary,	
transdisciplinary	⊠ No
skills	
Available for PhD	
students from other	□ Yes
courses	x No
Prerequisites	
(not mandatory)	General Relativity, Quantum Field Theory
Examination	
methods	Presentation on a topic relevant to the course and to the student's research
(in applicable)	project
Suggested readings	Polchinsky "String Theory"; Green–Schwarz–Witten "Superstring Theory";
Suggested readings	Freedman–Van Proeyen "Supergravity",

CORSI DI DOTTORATO

	Dall'Agata-Zagermann "Supergravity, From First Principles to Modern Applications"
Additional	
information	